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ABSTRACT

The Bay Area of California and surrounding region receives much of its annual precipitation during the

October–March wet season, when atmospheric river events bring periods of heavy rain that challenge water

managers and may exceed the capacity of storm sewer systems. The complex terrain of this region further

complicates the situation, with terrain interactions that are not currently captured in most operational

forecast models and inadequate precipitation measurements to capture the large variability throughout the

area. To improve monitoring and prediction of these events at spatial and temporal resolutions of interest to

area water managers, the BayAreaAdvancedQuantitative Precipitation Information project was developed.

To quantify improvements in forecast precipitation, model validation studies require a reference dataset to

compare against. In this paper we examine 10 gridded, high-resolution (#10 km, hourly) precipitation esti-

mates to assess the uncertainty of high-resolution quantitative precipitation estimates (QPE) in areas of

complex terrain. The products were linearly interpolated to 3-km grid spacing, which is the resolution of the

operational forecast model to be validated. Substantial differences exist between the various products at

accumulation periods ranging from hourly to annual, with standard deviations among the products exceeding

100% of the mean. While the products seem to agree fairly well on the timing of precipitation, intensity

estimates differ, sometimes by an order of magnitude. The results highlight both the need for additional

observations and the need to account for uncertainty in the reference dataset when validating forecasts in

this area.

1. Introduction

Accurate estimates of precipitation in California are

necessary because the state generally receives most of its

annual precipitation during a few significant storms that

occur during the cool season, often associated with at-

mospheric rivers (ARs) (Dettinger et al. 2011; Ralph

et al. 2006, 2013; Neiman et al. 2008; Lamjiri et al. 2017).

This precipitation must be managed in such a way that it

can be stored and released for use throughout the year

for irrigation, recreation, residential needs, and ecolog-

ical conservation (Dettinger et al. 2011; Kingsmill et al.

2006). Additionally, it is important to accurately mea-

sure and predict the precipitation that occurs with these

storms in order to enact flood control procedures and

prevent storm sewer system backups.

Because of the need for accurate forecasts of pre-

cipitation to force hydrologic models and for storm-

water utilities to prepare for the possibility of heavy

precipitation, a partnership between San Francisco Bay

Area water entities and the National Oceanic and

Atmospheric Administration (NOAA) called the Bay

Area Advanced Quantitative Precipitation Information

(AQPI) project was developed. The AQPI project seeks

to provide improved monitoring and forecasting of

precipitation processes, streamflow, and coastal flooding

for the Bay Area and surrounding region (Fig. 1) at high

spatial and temporal resolution. The project includes the

installation of a number of gap-filling X-band dual-

polarization radars that can observe precipitation in

areas that are a significant distance from the nearest
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National Weather Service (NWS) operational radar

(WSR-88D), or where the operational radar beam is

blocked by the complex terrain in the area. Additional

surface measurements of precipitation, streamflow, and

soil moisture are also included, and will be used to ini-

tialize and validate forecasts produced for the region

(https://www.esrl.noaa.gov/psd/aqpi/).

The Bay Area of California and surrounding areas are

uniquely challenging for quantitative precipitation esti-

mates (QPE). The complex terrain of both the Coastal

Ranges and the Sierra Nevada (Fig. 1) results in many

regions where the lowest beams of the operational

NEXRAD radars are blocked or overshoot shallow

precipitation. In a region that frequently experiences

shallow stratiform precipitation, this can result in pre-

cipitation occurring entirely beneath the lowest avail-

able radar beam going unobserved. The complex terrain

also inhibits in situ measurement by gauges, which are

typically placed closer to the valleys where access and

infrastructure are more readily available (Ebert et al.

2007; Henn et al. 2018). Orographic enhancement by the

terrain further complicates QPE, creating highly het-

erogeneous precipitation fields. QPE retrieved from

satellite-based observations can provide estimates

where ground-based radar and gauges are unavailable,

but are also subject to many uncertainties (Bartsotas

et al. 2018; Hirpa et al. 2010; Ebert et al. 2007; Tian and

Peters-Lidard 2010; Sun et al. 2018). Despite the chal-

lenges to observing precipitation in this region, many

high-resolution (#10 km, hourly to subhourly) gridded

precipitation products are available that can provide

QPE in the AQPI domain.

In this paper we evaluate these various products to

attempt to understand the level of uncertainty in high-

resolution QPE in this region. Many previous studies

have assessed precipitation uncertainty from a variety of

gridded products in regions of complex terrain at lower

spatial and/or temporal resolution (Bartsotas et al. 2018;

Derin et al. 2016; Hirpa et al. 2010; Dinku et al. 2008;

Timmermans et al. 2019; Beck et al. 2019; Ebert et al.

2007; Tian and Peters-Lidard 2010; Sun et al. 2018;

Dinku et al. 2010). While a few studies have examined

sub-10-km, hourly QPE over flat terrain in limited areas

(e.g., Anagnostou et al. 1999; Habib andKrajewski 2002;

Seo and Krajewski 2010), to our knowledge, the uncer-

tainty of hourly precipitation products that are available

for the continental United States (CONUS) and beyond

at grid spacings on the order of a few kilometers has not

yet been explored, possibly because the uncertainties at

lower resolutions and longer accumulation periods are

FIG. 1. The AQPI domain, with terrain shaded. Locations of HADS (gray 1) and HMT

(black dots) gauges are shown, as well as locations of operational WSR-88D radars in the

domain (green x). The 100-km range rings of radars inside and within 100 km outside the

domain are also shown (circles). Specific locations cited in the text are labeled for reference.
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known to be large. Operational entities in this region such

as theNWSandCaliforniaNevadaRiver Forecast Center

(CNRFC) rely heavily on gauge-based QPE adjusted

for orographic effects, such as Precipitation-Elevation

Regressions on Independent Slopes Model (PRISM;

Daly et al. 1994, 2017) for forecast evaluation on scales

from several hours to daily. However, it is important

within the context of the AQPI project to understand the

behavior of various QPE products at resolutions of in-

terest to AQPI stakeholders, which range from event

totals down to subhourly and grid spacings of a few ki-

lometers, which are necessary for accurate representation

of surface hydrologic processes in complex terrain (Chen

et al. 2019). Understanding the performance of existing

high-resolution QPE datasets can then inform how new

observations are used and how the experimental quanti-

tative precipitation forecasts (QPFs) can be evaluated.

Our goal in this study is not to compare each individual

dataset to a given ‘‘reference,’’ but rather to examine the

uncertainty in high-resolution QPE when considering

multiple datasets with an eye toward accounting for this

uncertaintywhen evaluating forecastmodel performance.

2. Datasets

In this study we evaluate gridded precipitation products

from a variety of sources, with the requirement that they

are available at hourly time steps and a spatial resolution of

10-km grid spacing or less. Because we are interested in

potentially using these products for validation of high-

resolution QPF, we linearly interpolate all products to

a 3-km grid to match that of the operational High

ResolutionRapidRefresh (HRRR;Benjamin et al. 2016)

model using the scipy.interpolate package in Python. We

assess several different types of QPE datasets, acknowl-

edging that each has its own strengths and weaknesses.

Included are four satellite-based products, two gauge da-

tasets, two gauge-informed products, and two multisensor

products. The four satellite products are the NOAA

Climate Prediction Center (CPC) morphing technique

(CMORPH; Joyce et al. 2004; Xie et al. 2017) version

1.0, Integrated Multisatellite Retrievals for GPM

(IMERG) version 6 research/final run (Huffman et al.

2018), Precipitation Estimation from Remotely Sensed

Information Using Artificial Neural Networks–Cloud

Classification System (PERSIANN-CCS; Hsu et al.

1997; Hong et al. 2004), and Global Satellite Mapping of

Precipitation (GSMaP; Kubota et al. 2007; Ushio et al.

2009). The twogaugedatasets are theHydrometeorological

Automated Data System (HADS; Kim et al. 2009)

and gauges operated in the region as part of the

Hydrometeorology Testbed–West (HMT). The gauge-

informed products are the Mountain Mapper (MM) and

Gauge-Adjusted Radar (GA) from the Multi-Radar

Multi-Sensor (MRMS; Zhang et al. 2011, 2014, 2016)

QPE. The two multisensor products are produced by the

National Centers for Environmental Prediction (NCEP)

and include the Real Time Mesoscale Analysis and

Unrestricted Mesoscale Analysis [RTMA (De Pondeca

et al. 2011) and URMA, respectively]. Stage IV, a 4-km

multisensor QPE product frequently used in precipita-

tion verification studies (Lin and Mitchell 2005; Nelson

et al. 2016) was not included in the full evaluation because

hourly QPE from the CNRFC has not been included in

the Stage IV product since 2016. Brief descriptions of the

products follow and are summarized in Table 1.

Gaps in data availability were minimal for the

satellite-based products, and gaps for multisensor

datasets ranged from 16% of hours for RTMA, ap-

proximately 5% for MRMS products, and less than

1% for URMA. Missing gauge data varied by gauge

location, with most sites missing less than 10% of

hours. No attempt was made to interpolate precipi-

tation estimates during periods of missing data.

a. Satellite-based products

1) CMORPH VERSION 1.0

The CMORPH technique allows for the combination

of instantaneous precipitation estimates retrieved from

TABLE 1. List of datasets used in the study, with native spatial and temporal resolution and primary observation type.

Dataset name Spatial resolution Temporal resolution Type

CMORPH 8 km 30min Satellite-based

IMERG 0.18 30min Satellite-based

PERSIANN 0.048 Hourly Satellite-based

GSMaP 0.18 Hourly Satellite-based

HADS gauges Point Hourly Gauge

HMT gauges Point Hourly Gauge

MRMS Gauge-Adjusted 1 km Hourly Gauge-adjusted radar

MRMS Mountain Mapper 1 km Hourly Climatology-adjusted gauge

RTMA 2.5 km Hourly Multisensor

URMA 2.5 km Hourly Multisensor
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multiple passive microwave instruments flown on low-

Earth-orbiting (LEO) satellite platforms into a global

precipitation estimate. A given location may only

experience a small number of LEO overpasses per

day, so in order to produce precipitation estimates

between LEO overpasses, consecutive images from

geostationary infrared (GEO-IR) satellite data are

used to estimate motion vectors and changes of size of

precipitation features. Using this information, time-

weighted interpolation is performed both forwards

and backward in time between LEO overpasses, de-

termining the shape and location of the precipitation

field during periods with no passive microwave obser-

vations. This is referred to as the ‘‘morphing’’ process

(Joyce et al. 2004). In version 1.0, the entire CMORPH

dataset is reprocessed and extended to cover the period

from 1998 to present. The reprocessing includes a bias

correction using CPC gauge-based analysis of daily

precipitation (Xie et al. 2017).

The CMORPH product is available half-hourly, at

;8-km grid spacing over the globe. To obtain an hourly

precipitation estimate for the purposes of this study,

each half-hourly rain rate estimate is assumed constant

for the entire half hour (e.g., a 1mmh21 rain rate esti-

mate over 30min 5 0.5mm of accumulated precipita-

tion during that time), and each 30-min estimate is

accumulated to obtain the hourly precipitation.

2) PERSIANN-CCS

PERSIANN-CCS is developed by the Center for

Hydrometeorology and Remote Sensing at the University

of California, Irvine. In the PERSIANN-CCS algorithm,

cloud features are categorized based on height, areal ex-

tent, and texture estimated from GEO-IR imagery. These

classifications are then used to help assign a rain rate to

each pixel within the cloud feature based on a regionally

dependent and temporally evolving empirical relationship

between rain-rate and brightness temperature that was

developed for each class of cloud. The cloud classification

system and precipitation distribution for each cloud type

was developed and trained for an artificial neural network

using surface radar and observations from the Tropical

Rainfall Measurement Mission (TRMM) satellite (Hsu

et al. 1997; Hong et al. 2004).

PERSIANN-CCS precipitation estimates are pro-

duced at a variety of time scales ranging from hourly to

annually, and are available at 0.048 grid spacing (ap-

proximately 4km) covering the area from 608N to 608S.

3) IMERG V06

The IMERG algorithm intercalibrates, merges, and

interpolates precipitation estimates from as many

LEOmicrowave instruments as possible, and includes

microwave-calibrated estimates from infrared satel-

lites as well as gauge analyses for the final run. The

production algorithm takes advantage of the wide

range of expertise the U.S. satellite precipitation

community has developed and represents a collabo-

ration of existing methodologies. First, the microwave

precipitation estimates are intercalibrated to account

for differences in scan strategy, overpass times, and

available channels on each LEO instrument. The mi-

crowave estimates are then interpolated temporally us-

ing CMORPH, which is also used, in conjunction with

PERSIANN to fill gaps with microwave-calibrated IR

estimates. Finally, monthly gauge data from a variety of

sources is used to reduce bias (Huffman et al. 2018).

IMERG provides gridded precipitation estimates at

0.18 grid spacing (;10km) every 30min from 608N to

608S. Hourly precipitation is calculated in the same way

as for CMORPH. IMERG products are produced with

different latencies to allow for near-real-time dissemi-

nation as well as monthly gauge-based bias correction.

Here we use the final run that incorporates the bias

correction for the highest quality possible, although for

rapid response applications relevant to AQPI partners

the near-real-time product might be more appropriate.

4) GSMAP V7

GSMaP is produced by the Japanese Aerospace

Agency (JAXA) and is similar to CMORPH in that it

combines precipitation estimates from passive micro-

wave radiometers on LEO satellites with motion vec-

tors from GEO-IR (Ushio et al. 2009; Kubota et al.

2007). It also incorporates a Kalman filter technique to

use cloud-top height measurements from the GEO-IR

to estimate changes in precipitation intensity that oc-

curs both forward and backward in time in between

LEO overpasses. GSMaP is available at 0.18 hourly

from 608N to 608S.

b. Independent gauge data

1) HADS

The HADS dataset includes approximately 7000

gauges operated by a variety of state and federal

agencies (Kim et al. 2009). Data from each gauge are

transmitted to the HADS program office, where it is

processed and archived. The incoming data from each

agency are monitored for obvious issues such as in-

strument malfunction or transmission errors; however,

stringent quality control is not performed and is left to

the end user. As part of the processing, observations

are confirmed to be valid at the top of the hour, and if

missing values can be proven to have occurred when no

rain was present, they are replaced in the data with
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zeros. HADS data are archived at the National Centers

for Environmental Information (NCEI). Gauges that

are included in the HADS network may be used to bias

correct or create other QPE products included in

this study.

For the purposes of this study, HADS point gauge

data are not interpolated to cover the entire domain

grid, and no additional quality control is performed.

Gauges are assumed representative of the 3-km grid box

they occupy, and if more than one gauge occupies a grid

box, the grid box value represents the average hourly

precipitation from those gauges. The location of 231

HADS gauges within the AQPI domain is shown by

gray plus signs in Fig. 1 and represents an average gauge

density of one gauge per 767km2.

2) HMT-WEST

The Physical Sciences Laboratory (PSL) at NOAA’s

Earth Systems Research Laboratory (ESRL) operates a

number of rain gauges in the western United States

as part of the NOAA Hydrometeorological Testbed.

Although fewer in number than the HADS gauges, the

HMT network provides an additional source of precip-

itation information in areas where other in situ mea-

surements might not be available and represents a

completely independent network that is not used for

gauge adjustment of any other QPE products evaluated

in this study. Many of the 49 gauges found in the AQPI

domain were sited with the purpose of monitoring pre-

cipitation interactions with the terrain. For example, 25

gauges are concentrated in the Russian River basin, just

north of the San Francisco Bay, while 8 are located in the

American River basin above Folsom Lake. Several of

the HMT-West gauges are collocated with vertically

pointing radars. The gauges are maintained by PSL staff

and are shown by black dots in Fig. 1. Gauges were re-

moved from consideration during periods with known

issues (telemetry problems or stuck gauge).

c. MRMS

MRMS products are produced at NCEP and distrib-

uted to NWS forecast offices and other agencies. MRMS

combines precipitation estimates from a variety of sen-

sors and observational networks to produce hourly

precipitation estimates over the CONUS on a 1-km grid

(Zhang et al. 2011, 2014, 2016). Input datasets include

U.S. and Canadian operational radar networks, HADS

gauge data with additional quality control as described

by Qi et al. (2016), PRISM (Daly et al. 1994, 2017), and

environmental output from numerical weather predic-

tion models. There are four separate MRMS QPE

products incorporating different input data or combi-

nations thereof: radar only, gauge only, Gauge-Adjusted

Radar, and Mountain Mapper. We focus here on the

evaluation of the products that include multiple types of

precipitation information: Gauge-Adjusted Radar and

Mountain Mapper, which have been shown to perform

more favorably in the region than the Radar Only and

Gauge Only products (Willie et al. 2017).

1) MRMS GAUGE-ADJUSTED RADAR

The MRMS Gauge-Adjusted Radar product uses

reflectivity data from the U.S. WSR-88D network and

C-band radars fromEnvironment Canada. As discussed,

weather radar data is not always reliable in the western

United States due to beam blockage and inadequate

coverage (Fig. 1), in addition to the systematic uncer-

tainties typical of radar-based QPE. To try to account

for these uncertainties, the MRMS algorithm identifies

different precipitation types that are assigned one of five

differentZ–R relationships (Zhang et al. 2016), employs

a radar quality index to determine where radar data may

not be reliable, and uses dual-polarization variables to

filter out nonprecipitation echoes.

The radar-based estimates of precipitation are then

adjusted using data from theHADS gauge network. The

adjustments are calculated at the gauge sites, and then

interpolated to the 1-km MRMS grid using inverse

distance weighting before being applied over the

whole domain.

2) MRMS MOUNTAIN MAPPER

The MRMS Mountain Mapper product does not

include radar. This product’s algorithm interpolates

the HADS rain gauge data using inverse distance

weighting, and then adjusts for orographic enhance-

ment using the PRISM climatology (Daly et al. 1994,

2017). PRISM uses an elevation model to calculate lin-

ear relationships between precipitation and elevation

at monthly and annual scales. These relationships are

then applied to the interpolated HADS data to produce

orographically enhanced precipitation in the Mountain

Mapper product.

d. RTMA and URMA

In 2004, theNWS established amultiphase program to

build a ‘‘Reanalysis of Record’’ to provide high spatial

and temporal reanalyses over an approximately 30-yr

period. The RTMA represents the first phase of this

program (De Pondeca et al. 2011). RTMA produces

two-dimensional variational (2DVAR) analyses of 2-m

temperature, specific humidity, and dewpoint as well as

10-m U and V wind components using hourly forecasts

from the 13-km Rapid Update Cycle (RUC) model as a

first guess. RTMA precipitation estimates are produced

by bilinearly interpolating the ‘‘early’’ version of the

MAY 2020 BYTHEWAY ET AL . 869

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/12/21 07:54 PM UTC



NCEP stage II multisensor hourly precipitation analysis

onto the 2.5-kmRTMAgrid. The early stage II analysis is

composed of data from 150WSR-88D operational radars

and gauge data from approximately 1500 Automated

Surface Observing System (ASOS) stations and is pro-

duced by NCEP at 35min past each hour. URMA pre-

cipitation analyses are produced later, using additional

data not available at the time of RTMA production.

3. Results

After all of the candidate datasets have been inter-

polated to 3-km grid spacing and hourly temporal res-

olution, we compared QPE over land from each of the

datasets in a variety of ways. While the focus of this

paper is to examine the hourly precipitation uncertainty,

it is a useful exercise to examine product behavior at

longer time scales. Previous studies have examined ac-

cumulation periods ranging from 3h to annual, however

the majority have focused on much lower spatial reso-

lution on the order of 0.258.
Figures 2 and 3 show the annual precipitation from

each of the high-resolution QPE products for calendar

years 2016 and 2017, respectively. Looking at two con-

secutive years of precipitation estimates illustrates the

large interannual variability of precipitation in the AQPI

domain and highlights systematic behaviors of individual

QPE products. All of the products appear to agree that

2017 was a wetter year than 2016. The largest year to year

difference is in the Sierra Nevada and is most evident in

the datasets that have the highest native spatial resolution

(MRMS, URMA, and gauges). The satellite-based

products typically have a lower signal of orographic

enhancement than the products that include ground-

based sensors. In fact, IMERG and PERSIANN-CCS

do not capture the topographic signal at all. CMORPH

and GSMaP have increased accumulations over the

terrain, but to a lesser magnitude than the ground-

based multisensor and gauge products. The GSMaP

precipitation maxima are also in distinctly different

locations than the other products. While most products

show a precipitation maximum for both years in the

Sierra Nevada above Lake Oroville, the maximum

annual precipitation from GSMaP is located to the

south of Lake Tahoe. Although the products, with

the exception of GSMaP seem to mostly agree on the

general location of the annual precipitation maximum,

they disagree on the magnitude. The disagreement is

larger in 2017 than 2016, where in 2017 annual accu-

mulations in the Sierra Nevada differ by over 1000mm

between the products.

Several artifacts are obvious in the CMORPH,

MRMS, RTMA, and URMA products. CMORPH

appears to have an issue over large bodies of water,

producing significant precipitation maxima over and

around them. This is possibly due to the microwave

emissivity model in the retrieval interpreting the

lower-emissivity water bodies as cold clouds. In the

FIG. 2. Annual accumulation of precipitation from calendar year 2016 at 3-km grid spacing for the 10 QPE datasets

considered.
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RTMA, URMA, and MRMS Gauge-Adjusted prod-

ucts, there are clearly artifacts related to the use of

radar. In 2016, the MRMS Gauge-Adjusted product

has a maximum just west of the Bay Area associated

with a large wind farm, which appears to have been at

least partially accounted for in 2017. Range rings

where a given radar’s radius of influence ends are

evident in the RTMA, and to a lesser extent URMA.

The MRMS Mountain Mapper product appears to

include several erroneous gauge stations just south of

Lake Tahoe, as evidenced by a large ring of enhanced

precipitation in Fig. 3. When looking at maps of

monthly accumulations (not shown), this feature seems

to only be a problem during the months of March and

April. This is likely due to a quality control issue and is

intended to be corrected with the next version of the

MRMS (S. Martinaitis 2019, personal communication).

Figures 2 and 3 also illustrate the relative scarcity of

gauge measurements in the AQPI domain, particularly

as one gets farther south; the gauge locations are en-

larged during plotting for easier viewing, which down-

plays the inadequate gauge availability.

Figure 4 shows the 2016 and 2017 annual accumulations

from the operational Stage IV 6-hourly QPE product.

East of the Rocky Mountains Stage IV is a multisensor

precipitation product that combines radar and rain gauge,

however the CNRFC does not use radar in their analysis

(Nelson et al. 2016), and so in the AQPI domain it is

composed of elevation-adjusted gauge estimates similar

to MRMS Mountain Mapper. The Stage IV product

shows much higher annual precipitation in both the

Coastal Range and Sierra Nevada than any of the prod-

ucts shown in Figs. 2 and 3, with the exception of the

northwest corner of the domain, which is consistent with

GSMaP in 2016 and MRMS-MM in 2017. Consistency

between Stage IV andMRMS-MM is to be expected due

to the similarities in production methodology.

There are also significant differences between the

products at monthly scales. Figure 5 shows the monthly

mean and standard deviation of hourly precipitation

from all of the products considered in the domain for

January 2017, while Fig. 6 shows the same duringAugust

2017, representing wet and dry months, respectively.

Previous studies have shown the performance of QPE,

particularly from satellites, to be seasonally dependent,

with some finding better performance during the dry

season (Derin et al. 2016; Dinku et al. 2010; Beck et al.

2019; Ebert et al. 2007; Tian and Peters-Lidard 2010). As

expected, the highest mean hourly precipitation for both

months is found over the Sierra Nevada, with the coastal

mountains receiving a secondary maximum. The least

precipitation falls in the Central Valley, which lies be-

tween the Sierra Nevada and Coastal Ranges. The spa-

tial distribution of precipitation in January 2017 is very

similar to that found in the annual accumulation maps,

which is unsurprising given that the majority of the an-

nual precipitation in this region comes from a few strong

storms associated with ARs during the wet season.

FIG. 3. As in Fig. 2, but for calendar year 2017.
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Figure 5 shows that, during January, mean hourly pre-

cipitation is around 0.75mm over the Sierra Nevada,

and closer to 0.25mm in the Central Valley. The stan-

dard deviation of hourly precipitation during the month

of January exceeds 100% of the mean over much of

the domain, even in areas that are relatively well in-

strumented such as the Central Valley. This highlights

the difficulty in obtaining high-resolution precipitation

estimates in this region: even where it is relatively well

observed, influences of the surrounding terrain make

accurate and precise QPE difficult.

Mean hourly precipitation for the month of August

2017 is much less than in January, and in fact is nearly 0

for most of the region. Maximum mean hourly precipi-

tation is in the terrain, where values are approximately

0.12mmh21. While the maximum in mean hourly pre-

cipitation was evenly distributed over the Coastal Range

and Sierra Nevada during January, in August the max-

imum is found only in the central Sierra Nevada south of

Lake Tahoe. The lack of strong synoptic scale weather

systems and ARs during the dry season likely limits pre-

cipitation to occasional orographically induced convection.

FIG. 4. Annual accumulation of Stage IV product at 3-km grid spacing for 2016 and 2017.

FIG. 5. Mean hourly precipitation and standard deviation for the month of January 2017.
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Again, variability among the different QPE products is

on the order of, and in some places greater than, the

monthlymean hourly precipitation. The large variability

between the products during this time of year is possibly

compounded by the smaller spatial extent and less

temporally coherent nature of orographic convection

(i.e., storms that occur between satellite overpasses or

do not precipitate over any gauges).

Figure 7 shows the annual cycle ofmonthlymean, 95th

percentile, and standard deviation of precipitation in the

AQPI domain for each product during calendar year

2017. Statistics for the HADS and HMT datasets con-

sider only those grid boxes with gauges and the Stage

IV product is included for reference. With regard to

monthly mean precipitation in the domain (Fig. 7a),

nearly all of the products agree as to the general sea-

sonal cycle, that is, having a maximum in January and

minimum in the summer months, with additional peaks

in February, April, and November. RTMA is the ex-

ception, having very low monthly average precipitation

during January (and in fact having the lowest domain

mean precipitation for most months). URMA compares

more similarly to the other datasets, indicating the

benefit of incorporating additional observations. The

HMT gauges have the highest monthly mean precipi-

tation; however, this is heavily weighted toward loca-

tions where gauges are sited, which for this dataset tends

to be locations where orographic effects on precipitation

are known to be large. GSMaP and HADS also have

much higher hourly mean precipitation in the domain in

January and February, but fall more in line with the

remainder of the products for the rest of the year. Stage

IV domain mean monthly rainfall falls in the middle of

the products and is generally similar to the MRMS-MM

and URMA.

The 95th percentile of monthly precipitation (Fig. 7b)

follows a similar pattern to the monthly mean rain-

fall, with maxima in January, February, April, and

November, and most likely represents accumulations

found somewhere at higher elevations. Here we see

that the products with the least representation of

orographic precipitation enhancement in Figs. 2 and 3

(PERSIANN-CCS, IMERG, RTMA, and URMA)

have the lowest magnitude 95th percentile monthly

precipitation, although URMA and IMERG agree

more closely with MRMS-GA during March through

May. The 95th percentile of MRMS-MMprecipitation

is larger than that of the MRMS-GA, illustrating the

impacts of adjustment for elevation in the MRMS

products. The 95th percentile of Stage IV in January

and February is second highest in magnitude. Since

these values are likely from high-elevation locations,

this is consistent with Stage IV having the highest

annual accumulation in the Sierra as shown in Fig. 3.

The spatial standard deviation of monthly mean pre-

cipitation is shown in Fig. 7c and is an indication of the

spatial variability of precipitation in the domain for each

month. This is, as expected, highest during the wet sea-

son, when most precipitation occurs and orographic

enhancement produces sharp gradients in intensity.

Comparing the time series to the annual precipitation

maps in Figs. 2 and 3, we can see that the products that

have more of a difference between low and high eleva-

tions have the highest standard deviations during the

wet season (both MRMS, GSMaP, CMORPH, URMA,

and Stage IV). The products that do not represent the

FIG. 6. As in Fig. 5, but for August 2017.
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increased precipitation over higher topography on the

annual scale have the lowest monthly standard devia-

tions of precipitation.

We now shift our focus to QPE at time scales of in-

terest to the AQPI project, that is, ranging from hourly

up to event-total time scales. Figure 8 shows the prob-

ability density function (PDF) of nonzero hourly pre-

cipitation for each of the products during the 2016–17

calendar years. Again, we see stark differences between

the products, some estimating much more light precip-

itation than others, while some estimate more frequent

heavy precipitation. The jumpy appearance of the gauge

datasets’ PDFs again highlights the relatively small

number of nonzero datapoints available even when

considering two full years of observations (the remain-

ing datasets’ PDFs represent the entire domain and are

not subsetted to gauge locations only). In general, the

gauge PDFs fall in the middle of the other datasets up to

2.5mm, then have one of the highest proportions of

hourly precipitation between 2.5 and 5mm, before fall-

ing back toward the middle of the pack for higher hourly

accumulation amounts. The RTMA and URMA prod-

ucts estimate the highest proportion of light precipita-

tion under 2.5mmh21 and have the lowest proportion of

heavy precipitation. The addition of more in situ obser-

vations seems to bring the URMA estimate more in line

with the other products, at least for accumulations up to

about 4mmh21. The four satellite products, CMORPH,

IMERG, PERSIANN-CCS, andGSMaP have the highest

proportion of precipitation . 10mmh21, with IMERG

being most similar to the gauge products for hourly pre-

cipitation exceeding 12.5mm. The two MRMS products

track fairly closely, with the MRMS Mountain Mapper

product havingmore very light precipitation (,1mmh21).

Since the interest of the AQPI stakeholders lies in

high-resolution QPE at the hourly time scale, we now

examine the uncertainty of the QPE during a heavy

precipitation event that took place during February

2017. From 2 to 12 February, the AQPI domain was

impacted by several atmospheric rivers that brought

significant precipitation to the region (White et al. 2019).

Figure 9 shows the mean and standard deviation of

hourly accumulation from the 10 QPE datasets over the

domain for the hour ending at 1400 UTC 7 February

2017. Over the Bay Area, and stretching eastward to-

ward Lake Tahoe and over the Sierra Nevada, the mean

hourly accumulation was approximately 4mm, with lo-

cally higher amounts exceeding 7mm in the terrain to the

northwest of Lake Tahoe and over Folsom Reservoir.

There is also a maximum exceeding 10mm just east of

LakeOroville. This maximum presents a bullseye pattern

often indicative of gauge artifacts, but itmay also be a real

signal as the basins above Oroville received significant

FIG. 7. (a) Mean, (b) 95th percentile, and (c) standard deviation

of hourly precipitation over the AQPI domain for each month

of 2017.
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precipitation during this period (White et al. 2019).

Similar to the monthly mean hourly precipitation shown

in Figs. 5 and 6, the standard deviation of precipitation

among the different QPE products exceeds 100% of the

mean during this hour of the storm.

Figure 10 shows mean hourly precipitation in the

domain for each dataset during the event. Much like in

the annual cycle shown in Fig. 7a, the different datasets

seem to agree fairly well in the timing of the heaviest

precipitation, but there is substantial disagreement on

amount. For all but the final pulse beginning at

1200 UTC 9 February, the HMT gauges have the

highest peak mean hourly precipitation, however, as

discussed above, this is heavily weighted to gauge

FIG. 8. PDF of nonzero hourly precipitation for 2016 and 2017.

FIG. 9. As in Fig. 5, but for the hour ending 1400 UTC 7 Feb 2017.
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locations in areas of orographic enhancement. The

HADS gauge dataset and MRMS Mountain Mapper

are typically the next highest values, and, along with

the HMT gauges seem to report precipitation occur-

ring slightly later or for a longer period of time than

the datasets that include remotely sensed observa-

tions (radar or satellite). CMORPH, IMERG, and

GSMaP indicate earlier onset of precipitation on 2, 6,

and 9 February. Meanwhile, on 4, 6, and 8 February,

MRMS-GA and URMA indicate precipitation ending

later than most of the satellite-based products, but

before the gauge-based QPE. These small timing

differences likely relate to the challenge of relating

remotely sensed cloud properties to surface precipi-

tation. GSMaP interestingly performs similarly to

most of the datasets for the first three precipitating

periods, as well as the period between 1200 UTC

8 February and 0000 UTC 9 February, but is among

the highest estimates during the other two periods

of precipitation. PERSIANN-CCS is easily distin-

guished as the QPE product that estimates the least

precipitation in the domain. Some of these behaviors

are evident in the event total precipitation maps

shown in Fig. 11.

As in the annual accumulation maps shown in Figs. 2

and 3, IMERG and PERSIANN-CCS show very little

orographic enhancement of the precipitation (Fig. 11)

and have the lowest overall accumulation values. GSMaP

also produces a similar pattern to the annual accumulation

maps, producingmaximumprecipitationmuch higher than

the other products and shifted to the south. The remainder

of the products place maximum precipitation in the

northern Sierra Nevada, though there is disagreement on

the magnitude and exact location. The MRMS products

place a clear maximum just above Lake Oroville, while

the HADS, HMT, RTMA, and URMA products place

the maximum to the southeast, between Lakes Oroville

and Tahoe. CMORPH, meanwhile, extends the maxi-

mum along much of the northern Sierra Nevada, and

appears to have a larger contrast between windward and

leeward slopes than the other products.

4. Summary and conclusions

Accurate, high spatial and temporal resolution pre-

cipitation estimates and forecasts are needed for the Bay

AreaAQPI project to better understand precipitation in

the Bay Area and improve precipitation forecasts. This

information is crucial for flood mitigation and water

management on time scales from hours to a year. The

BayArea and surrounding region of northern California

is uniquely challenged by relatively infrequent, but often

strong precipitation events that interact with both coastal

and inland topography. This topography also tends to

block radar observations in many areas, further chal-

lenging QPE in this region (Cifelli et al. 2018).

Despite the difficulties, there are still many high-

resolution (#10km, hourly) gridded QPE products

available in this region. All but the HMT gauges are

available for large geographic areas, either over the

CONUS or globally, and many have been shown to

compare favorably to reference datasets in previous

studies over larger domains, at degraded spatial reso-

lution, or at long accumulation times. We compared

FIG. 10. Mean hourly precipitation in the AQPI domain for the February 2017 event.
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these high-resolution datasets over the AQPI domain at

high spatial and temporal resolution, linearly interpolating

each to 3-km grid spacing to match the resolution of the

HRRR model that produces operational short-term fore-

casts in the U.S.We calculated statistics for the 3-kmQPE

fields at annual, monthly, and hourly scales using data

covering calendar years 2016 and 2017. Additionally, we

provided comparisons to the operational Stage IV analysis

at annual and monthly accumulation scales.

Even at annual accumulation times, there were many

large differences among the various QPE products.

While most had at least some enhanced precipitation

over the high terrain, the amount of the increase was

highly variable. Previous studies have found that satel-

lite precipitation products tend to underestimate pre-

cipitation in areas of high terrain (Bartsotas et al. 2018;

Dinku et al. 2008), consistent with the results found

herein, particularly for PERSIANN-CCS and IMERG.

While the various datasets also tended to agree on the

2017 annual cycle of precipitation, there was more dis-

agreement between the different QPE datasets during

the winter wet season than the summer dry season,

consistent with results found by Derin et al. (2016),

Dinku et al. (2010), Ebert et al. (2007), and Beck et al.

(2019). This disagreement is likely compounded by sat-

ellite products’ difficulty estimating precipitation pro-

duced by warm rain processes (Dinku et al. 2010; Derin

et al. 2016; Ebert et al. 2007), which occurs often in the

atmospheric rivers affecting this region.

At the hourly, 3-km scale of interest to AQPI partner

agencies, there is a large variation in the PDF of nonzero

hourly precipitation within the region, with frequency of

occurrence for hourly precipitation exceeding 2.5mm

differing by an order of magnitude or more among the

different QPE datasets. It is important to remember that

not all of these datasets are completely independent: for

example, gauges that are part of the HADS dataset also

have an influence in the bias correction of CMORPH,

IMERG, and MRMS Gauge-Adjusted products, and

serve as a basis for theMRMSMountainMapper product,

yet there are still large differences between the hourly

precipitation PDF of each of those datasets. These

differences are likely due to the remotely sensed in-

formation filling in gauge-less areas and bias correction

algorithms and datasets that use different gauges than

make up the entire HADS dataset (i.e., using addi-

tional gauges not included in HADS, or data that only

includes a subset of HADS gauges).

The results in this study illustrate the very difficult

task of obtaining accurate high spatial and temporal

resolution QPE in regions of complex terrain. The

consistent results with previous studies performed at

lower resolutions indicate that the challenges of accurate

high-resolution QPE are not unique to the Bay Area of

California, and such uncertainty in high-resolution QPE

can likely be expected in other regions of complex terrain

as well. Several of the products examined herein were

upscaled from their native resolution to the 3-kmHRRR

FIG. 11. As in Fig. 2, but for the event lasting from 0000 UTC 2 Feb 2017 through 0000 UTC 12 Feb 2017.
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resolution, though this generally represents only a slight

degradation and in theory would only serve to improve

the comparison between products. While the opera-

tional forecasters at agencies such as the NWS and

CNRFC produce QPE analysis at 4-km spatial resolu-

tion, they do not perform QPE analysis or QPF valida-

tion at hourly accumulations, nor do they make use of

satellite-based QPE products. In the context of the

AQPI project, the lower temporal resolutions used by

operational agencies are too coarse for many of the

stakeholders, and so a main goal of AQPI is to provide

improved observations and forecasts of hydrological

variables at high spatial and temporal resolutions.

Understanding the uncertainty in the existing available

high-resolutionQPEwill help to quantify improvements

made by additional observing systems and experimental

model forecasts.

Given the large uncertainty in hourly precipitation on

the scale of a few kilometers, it is suggested that im-

proving observational capabilities in regions of complex

terrain, whether through additional instrumentation,

advanced quality control techniques to remove poten-

tially spurious data points (Lundquist et al. 2019), or

continued improvement to satellite-basedQPE (Utsumi

et al. 2019), might be a useful step toward decreasing

uncertainty. Additionally, the large uncertainty in high-

resolution QPE should be considered when using any of

the available datasets for forecast validation.
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